# system design & management

MIT**sdm** 

### How to Pick Breakthrough Technologies Using Network and Game Theory

Nissia Sabri | Director Strategic Business Development at Novanta

nissia.sabri@sloan.mit.edu

### Introduction

### Education

- + MS, Engineering and Management
  - + MIT SDM
- + MS, Nuclear and Radiological Engineering
  - + University of Florida
- + MS, Physics
  - + Grenoble Institute of Technology (France)

### Experience

- + Director of strategic business development at Novanta
  - + Novanta serves the industrial robotics and medical technology markets
- + **Cofounder** at Bitsence, developing a space occupancy & analytics platform to improve cities, architecture, and real estate developments
- + **Product Manager**, leading product portfolio management for large and medium size companies in the clean energy and radiation protection fields
- + **Risk analyst**, creating data models to forecast complex energy systems' failures



### **About the Research**

Technology Investments SDM Master thesis 2016

### **Supervisors**

#### Dr. Olivier de Weck MIT School of Engineering

Professor of Aeronautics and Astronautics and Engineering Systems

### Dr. Alessandro Bonatti

#### **MIT Sloan School of Management**

Associate Professor of Applied Economics



### **TODAY'S AGENDA**

#### Part 1

→ Context & challenges

Part 2

 $\rightarrow$  A data driven approach













Part 3

MIT**sdm** 

→ Real world applications









# **CONTEXT & CHALLENGES**



Context

Challenge

Leadership, Innovation, Systems Thinking

### FAST RISE OF NUMBER OF DEALS INVOLVING A TECH TARGET



# TECH DEAL MARKET GROWTH IN <u>VALUE</u> SIGNIFICANTLY OUTPACING THE OVERALL M&A MARKET

#### Context

Challenge

MITsdm

High-tech deals represented almost 30% of the total \$2.5 trillion of completed M&A transactions in 2016



\*Source: BCG- The Resurgent High-Tech M&A Marketplace

### THE SHARE OF NONTECH BUYERS IS RISING

Context

Challenge

Approximately 70% of all tech deals in involved buyers from outside the tech sector.



SHARE OF TECH M&A BY TYPE OF ACQUIRER (%)





Source: BCG - The Resurgent High-Tech M&A Marketplace

MITsdm

Leadership, Innovation, Systems Thinking

### HOW CAN FIRMS GAIN A COMPETITIVE ADVANTAGE THROUGH TECHNOLOGY ACQUISITION?

Challenge

Need

As the pace of technology-driven change accelerates, a key question for senior executives has become: <u>how do</u> <u>we position ourselves in a highly disruptive</u> <u>ecosystem?</u> More often than not, acquisitions of techdriven, and especially digital, business models have become the instrument of choice to acquire needed technologies, capabilities, and products and to close innovation gaps.

Key Question The question is, <u>How do companies rapidly access</u> <u>the technologies that can advance their businesses</u> and integrate them successfully with their current operations?

Source BCG: The 2017 M&A Report: The Technology Takeover

### MITsdm















#### NATURAL LANGUAGE PROCESSING UNCOVERING CONNECTIONS BETWEEN TECHNOLOGIES



Competition

#### Example: Immune Engineering

White blood

Bone marrow

Chemotherapy Antibody

Oncology

Thymus

cell

0.582719

0.558695

0.506064

0.495587

0.471906

## MIT**sdm**

| Keyword                         | Relevance |
|---------------------------------|-----------|
| cells                           | 0.98233   |
| white blood cells               | 0.837876  |
| extensively engineered<br>cells | 0.831548  |
| Immune cells                    | 0.82056   |
| so-called killer cells          | 0.805677  |
| engineered T cells              | 0.790827  |
| immune system cells             | 0.788983  |
| engineering human cells         | 0.771505  |
| cancer cells                    | 0.762188  |
| tumor cells                     | 0.745861  |
| futuristic T cells              | 0.732288  |
| killer T cells                  | 0.725298  |
| single T cells                  | 0.723793  |
| Great Ormond                    | 0.691386  |
| drug companies                  | 0.685833  |
| immune engineering              | 0.680573  |
| cancer treatment                | 0.663458  |
| gene editing                    | 0.653015  |
| Integrative Cancer<br>Research  | 0.64483   |
| cancer immunotherapy            | 0.643333  |
| Hospital Great Ormond<br>Street | 0.638253  |
| new DNA instructions            | 0.63576   |
| major cell types                | 0.632493  |
| New York                        | 0.631327  |
| clinical trial                  | 0.625835  |
| dozen drug firms                | 0.625794  |
| new research techniques         | 0.6248    |
| largest drug companies          | 0.622664  |
| bone marrow transplant          | 0.621293  |
| immune therapy                  | 0.621248  |

| Entity                                  | Relevance | Entity Type        |
|-----------------------------------------|-----------|--------------------|
| Great Ormond                            | 0.412777  | City               |
| Manhattan                               | 0.379174  | City               |
| San Francisco                           | 0.351447  | City               |
| Cellectis                               | 0.686313  | Company            |
| TALENs                                  | 0.396606  | Company            |
| Google                                  | 0.385513  | Company            |
| Juno                                    | 0.326018  | Company            |
| Great Ormond                            | 0.31739   | Company            |
| Pfizer                                  | 0.311992  | Company            |
| Cell Design Labs                        | 0.298714  | Company            |
| Juno Therapeutics                       | 0.294232  | Company            |
| Nobel Prize                             | 0.305582  | EntertainmentAward |
| immune system                           | 0.952346  | FieldTerminology   |
| bone marrow                             | 0.338757  | FieldTerminology   |
| biotechnology<br>companies              | 0.312867  | FieldTerminology   |
| Mount Sinai                             | 0.355874  | GeographicFeature  |
| leukemia                                | 0.578772  | HealthConditior    |
| HIV                                     | 0.451964  | HealthCondition    |
| cancer                                  | 0.438812  | HealthCondition    |
| infectious disease                      | 0.369968  | HealthCondition    |
| researcher                              | 0.406895  | JobTitle           |
| U.S. Food and Drug<br>Administration    | 0.339952  | Organization       |
| MIT's Koch Institute<br>for Integrative | 0.330135  | Organizatior       |
|                                         | 0 202067  | Organization       |
| Lavla Richards                          | 0.292907  | Person             |
| Wondoll Lim                             | 0.335731  | Person             |
|                                         | 0.449101  | r eisui            |

| Label                                          | Score    |
|------------------------------------------------|----------|
| /health and<br>fitness/disease/cance<br>r      | 0.524787 |
| /health and<br>fitness/disease/aids<br>and hiv | 0.397025 |
| /health and<br>fitness/disease                 | 0.28493  |

#### 6 DIFFERENT NETWORKS OFFER DIFFERENT LENSES TO UNDERSTAND LINKS BETWEEN TECHNOLOGIES AND COMPANIES



an  $n \times p$  matrix with entries

![](_page_16_Figure_0.jpeg)

#### [ON AVERAGE] A TECHNOLOGY IS CONNECTED TO 13 OTHER TECHNOLOGIES WHILE A COMPANY IS CONNECTED TO 4 OTHER COMPANIES

Adjacency

Framework

Data

NLP

Network

Visualization

 Technologies through

concepts

Steps

| Measure                             | Value |
|-------------------------------------|-------|
| Number of nodes                     | 149   |
| Number of edges                     | 971   |
| Average degree                      | 13.03 |
| Number of connected components      | 7     |
| Size of largest connected component | 143   |
| The average shortest path length    | 2.79  |

![](_page_17_Figure_10.jpeg)

Companies through technologies

| Measure                             | Value |
|-------------------------------------|-------|
| Number of nodes                     | 229   |
| Number of edges                     | 525   |
| Average degree                      | 4.58  |
| Number of connected components      | 49    |
| Size of largest connected component | 138   |
| The average shortest path length    | 2.91  |

![](_page_17_Figure_13.jpeg)

MITsdm

![](_page_18_Figure_0.jpeg)

![](_page_19_Picture_0.jpeg)

## MI**⊺sdm**

![](_page_20_Figure_0.jpeg)

#### EACH TARGET TECHNOLOGY HAS A BENEFIT AND A COST ASSOCIATED TO IT

![](_page_21_Figure_1.jpeg)

#### DEPENDING ON A FIRM'S CORE VERTICAL MARKET SOME TECHNOLOGY TARGETS ARE MORE ATTRACTIVE THAN OTHERS

![](_page_22_Figure_1.jpeg)

- The different colors represent the pairs (source, target) that belong to the same cluster.
- For instance the green represents all the possible combinations of nodes in Cluster 1 (Living Matter), whereas red represents the pairs in Cluster 2 (Energy).
- If nodes in a pair belong to different clusters the pair would appear in blue.
- We note that pairs of nodes within the (Living Matter) cluster have higher benefit and lower cost than those in energy for example.

![](_page_22_Picture_6.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

#### IN COMPETITIVE GAMES THE PAYOFFS CHANGE DEPENDING ON THE ACTIONS OF THE COMPETITOR

![](_page_24_Figure_1.jpeg)

#### **IF NO DOMINANT STRATEGY – CAN YOU ESTIMATE YOUR COMPETITOR'S LIKELY ACTIONS?**

![](_page_25_Figure_1.jpeg)

Competition

MIT**sdm** 

#### Tesla has a dominant strategy

| Apple / Tesla | Invest       | Do not invest |
|---------------|--------------|---------------|
| Invest        | (-0.3, 0.65) | (1.36, 0)     |
| Do not invest | (0, 2.31)    | (0, 0)        |

Therefore Apple should not invest

![](_page_25_Figure_6.jpeg)

Pavoff)

£

# HOW TECHNOLOGY PRICE CAN AFFECT THE PAYOFFS AND ACTIONS

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Picture_1.jpeg)

Consulting

Industry

Leadership, Innovation, Systems Thinking

![](_page_28_Figure_0.jpeg)

Industry

#### Part 3

# **REAL WORLD APPLICATIONS**

### MITsdm

### **CONSULTING APPLICATIONS - MCKINSEY**

Consulting

### Startup and Investment Landscape Analytics

#### Features

- Inform strategic and investment choices for organic and inorganic growth.
- Supported 60+ clients in over 100 projects cutting across industries and geographies.
- Provides market map, identify disruptive trends driven by new business models and investments in technologies, potential partners and competitors.
- Combines diverse data sets with advanced analytic techniques, visualization and sector.

#### **Benefits**

- From weeks to Days
- White spaces
- Less experts interviews

### MIT**sdm**

### **CONSULTING APPLICATIONS - BCG**

![](_page_30_Figure_1.jpeg)

### MIT**sdm**

Source: BCG - The Rise of robotics

![](_page_31_Figure_0.jpeg)

![](_page_31_Picture_1.jpeg)

Industry

### QUID

Consulting

#### Industry

In side by side comparisons, the Quid Intelligence Platform delivers insight 4X faster, 10X broader, and 5X deeper than traditional tools

![](_page_32_Picture_4.jpeg)

## MITsdm

![](_page_33_Figure_0.jpeg)

### Summary

|              | <ul> <li>Fast rise of <u>number</u> of deals involving a tech target</li> </ul>                                      |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Contoxt and  | <ul> <li>Tech deal market growth in <u>value</u> significantly outpacing the overall M&amp;A market</li> </ul>       |  |  |  |  |
| Challenge    | <ul> <li>The share of <u>non-tech buyers</u> is rising</li> </ul>                                                    |  |  |  |  |
| energe       | <ul> <li>There is a need for a data driven approach companies could use to rapidly access the</li> </ul>             |  |  |  |  |
|              | technologies that can advance their businesses                                                                       |  |  |  |  |
|              |                                                                                                                      |  |  |  |  |
|              | <ul> <li><u>Beyond patents</u>, other data sources that represent the socio-technical environment of a</li> </ul>    |  |  |  |  |
|              | technology are proving useful (Capital IQ, Crunch base, News and Journals)                                           |  |  |  |  |
|              | <ul> <li>Natural language processing is helping us uncover <u>underlying connections</u> between</li> </ul>          |  |  |  |  |
|              | technologies                                                                                                         |  |  |  |  |
| Approach     | <ul> <li><u>Networks</u>' nodes and links <u>offer insights on core and niche technology applications</u></li> </ul> |  |  |  |  |
|              | <ul> <li>From a firm's know-how we are able to define a path to a target technology</li> </ul>                       |  |  |  |  |
|              | <ul> <li>Each target technology has a benefit and a cost associated to acquiring it</li> </ul>                       |  |  |  |  |
|              | <ul> <li>Depending on a firm's core vertical market some technology targets are more attractive</li> </ul>           |  |  |  |  |
|              | than others                                                                                                          |  |  |  |  |
|              | <ul> <li>In competitive games the payoffs change depending on the actions of the competitor</li> </ul>               |  |  |  |  |
|              |                                                                                                                      |  |  |  |  |
|              | <ul> <li>Data driven approaches are increasingly <u>used in consulting and industry</u> but need to be</li> </ul>    |  |  |  |  |
| Applications | paired with the right strategic analysis                                                                             |  |  |  |  |
|              | <ul> <li>You can do it too – commercial services or home grown but you need the right skills</li> </ul>              |  |  |  |  |
|              |                                                                                                                      |  |  |  |  |
|              | Leadership, Innovation, Systems Thinking 35                                                                          |  |  |  |  |

## MIT**sdm**

Leadership, Innovation, Systems Thinking